Dictionary-Guided Editing Networks for Paraphrase Generation
نویسندگان
چکیده
منابع مشابه
Neural Paraphrase Generation with Stacked Residual LSTM Networks
In this paper, we propose a novel neural approach for paraphrase generation. Conventional paraphrase generation methods either leverage hand-written rules and thesauri-based alignments, or use statistical machine learning principles. To the best of our knowledge, this work is the first to explore deep learning models for paraphrase generation. Our primary contribution is a stacked residual LSTM...
متن کاملQuestion Paraphrase Generation for Question Answering System
The queries to a practical Question Answering (QA) system range from keywords, phrases, badly written questions, and occasionally grammatically perfect questions. Among different kinds of question analysis approaches, the pattern matching works well in analyzing such queries. It is costly to build this pattern matching module because tremendous manual labor is needed to expand its coverage to s...
متن کاملA Deep Generative Framework for Paraphrase Generation
Paraphrase generation is an important problem in NLP, especially in question answering, information retrieval, information extraction, conversation systems, to name a few. In this paper, we address the problem of generating paraphrases automatically. Our proposed method is based on a combination of deep generative models (VAE) with sequence-to-sequence models (LSTM) to generate paraphrases, giv...
متن کاملJoint Copying and Restricted Generation for Paraphrase
Many natural language generation tasks, such as abstractive summarization and text simplification, are paraphrase-orientated. In these tasks, copying and rewriting are two main writing modes. Most previous sequence-to-sequence (Seq2Seq) models use a single decoder and neglect this fact. In this paper, we develop a novel Seq2Seq model to fuse a copying decoder and a restricted generative decoder...
متن کاملLeveraging Multiple MT Engines for Paraphrase Generation
This paper proposes a method that leverages multiple machine translation (MT) engines for paraphrase generation (PG). The method includes two stages. Firstly, we use a multi-pivot approach to acquire a set of candidate paraphrases for a source sentence S. Then, we employ two kinds of techniques, namely the selection-based technique and the decoding-based technique, to produce a best paraphrase ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33016546